Robust Semiparametric Optimal Testing Procedure for Multiple Normal Means

نویسندگان

  • Peng Liu
  • Chong Wang
  • Yongzhao Shao
چکیده

In high-dimensional gene expression experiments such as microarray and RNA-seq experiments, the number of measured variables is huge while the number of replicates is small. As a consequence, hypothesis testing is challenging because the power of tests can be very low after controlling multiple testing error. Optimal testing procedures with high average power while controlling false discovery rate are preferred. Many methods were constructed to achieve high power through borrowing information across genes. Some of these methods can be shown to achieve the optimal average power across genes, but only under a normal assumption of alternative means. However, the assumption of a normal distribution is likely violated in practice. In this paper, we propose a novel semiparametric optimal testing SPOT procedure for highdimensional data with small sample size. Our procedure is more robust because it does not depend on any parametric assumption for the alternative means. We show that the proposed test achieves the maximum average power asymptotically as the number of tests goes to infinity. Both simulation study and the analysis of a real microarray data with spike-in probes show that the proposed SPOT procedure performs better when compared to other popularly applied procedures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust tests for testing the parameters of a normal population

This article aims to provide a simple robust method to test the parameters of a normal population by using the new diagnostic tool called the “Forward Search” (FS) method. The most commonly used procedures to test the mean and variance of a normal distribution are Student’s t test and Chi-square test, respectively. These tests suffer from the presence of outliers. We introduce the FS version of...

متن کامل

An Empirical Bayes Optimal Discovery Procedure Based on Semiparametric Hierarchical Mixture Models

Multiple testing has been widely adopted for genome-wide studies such as microarray experiments. For effective gene selection in these genome-wide studies, the optimal discovery procedure (ODP), which maximizes the number of expected true positives for each fixed number of expected false positives, was developed as a multiple testing extension of the most powerful test for a single hypothesis b...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Semiparametric methods for genome-wide linkage analysis of human gene expression data

With the availability of high-throughput microarray technologies, investigators can simultaneously measure the expression levels of many thousands of genes in a short period. Although there are rich statistical methods for analyzing microarray data in the literature, limited work has been done in mapping expression quantitative trait loci (eQTL) that influence the variation in levels of gene ex...

متن کامل

Design and Analysis of Step Stress Accelerated Life Tests for Censored Data}

Life testing often is consuming a very long time for testing. Therefore, the engineers and statisticians are looking for some approaches to reduce the running time. There is a recommended method for reducing the time of failure, such that the stress level of the test units will increase, and then they will fail earlier than normal operating conditions. These approaches are called accelerated li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014